РБК Компании
Главная Рексофт 1 октября 2024

ИИ-революция: как нужно латать кадровые дыры в ИТ

Алексей Лебедев, руководитель направления по работе с финансовым сектором группы «Рексофт»: «ИИ позволит ИТ-специалистам сэкономить до двух часов в день»
ИИ-революция: как нужно латать кадровые дыры в ИТ
Источник изображения: Stock.adobe.com
Алексей Лебедев
Алексей Лебедев
Руководитель направления по работе с финансовым сектором группы «Рексофт»

Отвечает за развитие бизнеса в сферах финансов и инвестиционных рынков

Подробнее про эксперта

Подход к разработке программного обеспечения принципиально не менялся на протяжении последних 50 лет. Однако возможности искусственного интеллекта (ИИ) переворачивают ситуацию с космической скоростью и позволяют специалистам, работающим в области разработки ПО, делегировать часть задач, общаясь с моделями на естественном языке. Использование ИИ-ассистентов, в частности, больших языковых моделей (LLM) при разработке ПО позволяет добиться увеличения производительности на 17-20% и экономит ИТ-специалистам до двух часов в неделю на рутинных операциях.

Планирование состава команды

Начнем с того, что ИИ может быть полезен еще до начала разработки. Системы интеллектуального подбора персонала помогают автоматизировать и оптимизировать процесс выбора специалистов и формирования команды для реализации проекта. Они анализируют описания вакансий и резюме кандидатов, выявляя соответствие навыков, опыта и других характеристик. Это позволяет значительно ускорить процесс поиска и подбора подходящих кандидатов, снизить субъективность оценки и повысить эффективность найма.

Существуют два варианта внедрения таких решений — коробочные решения от вендоров, например, TalentAdore, Teamcubate или Phenom People, и собственная разработка. При наличии сильной внутренней ИТ-команды собственная разработка позволяет максимально адаптировать ПО к специфике компании и интегрировать с существующими системами. Так, например, в рамках одного из реализованных кейсов «Рексофт» выбрал модель Mixtral и разработал систему подбора персонала на Python с использованием Gradio в качестве интерфейса. Созданное решение позволило компании сократить время на подбор кандидатов на проект на 30% и повысить качество найма на 15%.

Проработка идеи и прототипирование

Помимо этого, использование ИИ позволяет увеличить скорость проработки идеи и реализации прототипа на 7-10%. Генеративные нейросети, такие как GigaChat (Сбер) или YandexGPT, становятся ценными помощниками в этом процессе. С их помощью можно провести мозговой штурм и посмотреть на предложенную идею со стороны разных ролей, например, финансового или ИТ-директора, дополнить или скорректировать ее с учетом нужного видения и различных требований внутри организации без привлечения дополнительных специалистов. Кроме того, они позволяют значительно ускорить прототипирование при помощи автоматической кодогенерации.

Анализ и проработка требований

На этой стадии будут полезны ИИ-решения двух типов: для анализа текста и для преобразования речи в текст. Первый тип использует LLM и технологии обработки естественного языка (NLP) для автоматического анализа текстовых документов, извлечения ключевой информации, выявления противоречий и создания структурированных отчетов. Это позволяет аналитикам быстро и эффективно обрабатывать большие объемы документации и формировать четкие требования к разрабатываемому ПО.

Разработка кода

Ассистенты разработчика на базе ИИ могут генерировать части кода, предлагать варианты автодополнения, выявлять ошибки и предоставлять контекстную информацию. Этот класс решений использует LLM для помощи разработчикам в написании и оптимизации кода и помогает повысить эффективность работы на 10%, Например, не так давно такое решение представил «СберТех». GitVerse — инструмент разработки и автодополнения кода — является аналогом GitHub, которым привыкли пользоваться разработчики по всему миру.

Тестирование

Этот класс решений использует ИИ и машинное обучение для автоматизации и оптимизации различных аспектов тестирования ПО, включая генерацию тестовых случаев, выполнение тестов, анализ результатов и прогнозирование потенциальных проблем. Модели помогают писать сценарии для различных типов тестирования, включая unit-тесты, интеграционное (API) тестирование и тестирование на проникновение. Это позволяет сократить время на написание тестов и повысить их покрытие. Согласно исследованием, скорость написания тестов с использованием ИИ-инструментов повышается на 15-20%.

В перспективе ИИ действительно сможет выполнять почти все задачи по разработке, сопровождению, развитию и эксплуатации ПО. Но пока, по данным ассоциации РУССОФТ, в России его эффективно используют менее 20% компаний. Уже сейчас многие ИТ-компании интегрируют ИИ-инструменты в существующие системы и процессы, создавая гибридные команды разработки с ИИ-агентами. Постепенно искусственному интеллекту будет передаваться все больше задач, но контроль за процессом и результатом, творческие и мотивирующие задачи должны быть оставлены за человеком.

Интересное:

Новости отрасли:

Все новости:

Публикация компании

Достижения

Рост более чем в 2 раза за 2023В 2023 году группа «Рексофт» достигла отметки выручки в 3,35 млрд руб. и 1 500 сотрудников
«Компания будущего 2023»Проект «Рексофт» для Домодедово победил в премии «Компания будущего 2023»
Финалист рейтинга HH.ruФиналист рейтинга работодателей России HH.ru
Премия «Горная индустрия 4.0»За проект «Предиктивная диагностика и контроль эксплуатации техники СДО» для АО «Кольская ГМК»
ТОП-1000 российских менеджеровРуководители «Рексофт» вошли в рейтинг «ТОП-1000 российских менеджеров» Ассоциации менеджеров

Профиль

Дата регистрации30.05.1991
Уставной капитал10 000,00 ₽
Юридический адрес г. Санкт-Петербург, вн.тер.г. муниципальный округ Аптекарский остров, пр-кт Медиков, д. 3 литера А, помещ. 4н, офис 310
ОГРН 1027801578628
ИНН / КПП 7802020639 781301001

Контакты

Адрес 125047, Россия, г. Москва, Бутырский вал, д. 10, этаж 11
Телефон +74952521999

Социальные сети

ГлавноеЭкспертыДобавить
новость
КейсыМероприятия