Top.Mail.Ru
РБК Компании
Заморозили скидки: делитесь новостями бизнеса и читайте эксклюзивы на РБК
Успеть до 14.12
Заморозили скидки:
делитесь новостями бизнеса
и читайте эксклюзивы на РБК
Успеть до 14.12

Вузы разделились на шесть лагерей в отношении к искусственному интеллекту

Директор Института образования НИУ ВШЭ Евгений Терентьев о том, каким должно быть образование в эпоху ИИ
Вузы разделились на шесть лагерей в отношении к искусственному интеллекту
Источник изображения: Архив НИУ ВШЭ
Евгений Терентьев
Евгений Терентьев
Директор Института образования НИУ ВШЭ

Кандидат социологических наук

Подробнее про эксперта

Каким должно быть образование в эпоху ИИ? Чтобы разобраться, какие есть точки зрения и какие решения уже формируются, команда Института образования ВШЭ весной 2025 года провела серию интервью с проректорами российских университетов. Об итогах этого исследования рассказывает директор института Евгений Терентьев.

Пока в публичных дискуссиях обсуждают, заменит ли нейросеть преподавателя, в реальной жизни вузы решают вопросы куда сложнее. Как встроить ИИ в образовательный процесс так, чтобы не разрушить то, что строилось десятилетиями? Что делать, если студенты уже используют GenAI, а преподаватели пока нет? Как определить границы допустимого и тем самым не задушить инициативу?

Чтобы получить живую картину, мы поговорили с проректорами по образовательной политике — представителями ведущих, региональных и специализированных вузов, решения которых определяют университетскую реальность. В результате получилось не просто описание подходов, а, по сути, первая в России типология институциональных стратегий в отношении генеративного ИИ.

Сегодня в вузах сосуществуют шесть моделей поведения. Первая — активное внедрение: запуск курсов цифровой грамотности и поощрение преподавателей за использование новых инструментов. Вторая — регламентация: разработка внутренних правил использования ИИ в учебном процессе. Третья — избирательный подход: разрешение ИИ только в определенных дисциплинах. Четвертая — ограничения: запрет ИИ при выполнении заданий и ожидание указаний от федеральных органов. Пятая — экспериментальная: создание пилотных зон для тестирования новых форматов. Шестая — выжидательная: наблюдение за ситуацией без активных действий. Все эти варианты отражают не столько разные стратегии, сколько отсутствие общей логики действий. Система реагирует на ИИ ситуативно, а не последовательно, и в этом главная уязвимость.

По результатам исследования Института образования ВШЭ и «Яндекс Крауд», почти 40% российских университетов вообще не реагируют на распространение генеративного искусственного интеллекта: за три года у них не появилось ни одной новости с тегом «ИИ». Среди немногих лидеров по активности — вузы, участвующие в программе «Приоритет-2030», и наиболее селективные университеты.

Отношение к ИИ в университетах чаще складывается не как продуманный курс, а как реакция на растерянность. Почти всем уже понятно, что обойтись без этих технологий не получится, но что с ними делать на практике — по-прежнему неясно. Проблема не столько в нехватке денег или кадров, сколько в том, что у системы нет внутреннего ответа. Не решено, чему теперь учить и как проверять, что считать результатом и какую роль в этом всем играет преподаватель.

Мы выяснили, что уровень использования GenAI среди студентов значительно выше, чем среди преподавателей. Большинство преподавателей только начинают осваивать новые инструменты. Национальных политик по ИИ в высшем образовании до сих пор не появилось, что только усиливает разрыв между поколениями и роль стихийных практик.

Пока этих ответов нет, любое внедрение ИИ остается точечным, а реальные изменения в образовании откладываются на потом. В такой ситуации система хватается за то, что кажется знакомым и управляемым. Запрет, инструкция, регламент. Срабатывает привычный рефлекс: если непонятно, лучше остановить. Но на одних запретах далеко не уедешь и в рейтинге не продвинешься. Тем временем учебная реальность меняется с каждым семестром.

По наблюдениям исследователей из Института образования ВШЭ и «Яндекс Крауд», только 5% университетов разрабатывают собственные ИИ-сервисы и инструменты. Подавляющее большинство вузов ограничиваются обсуждениями, мероприятиями или нейтральными публикациями, они не доходят до реальной интеграции ИИ в образовательный процесс.

Когда университет не заявляет четкую позицию по ИИ, это уже само по себе становится решением — решением оставить все как есть. Бездействие приводит к тому, что преподаватели и студенты начинают действовать по собственному усмотрению, и образовательный процесс превращается в лоскутное одеяло из несогласованных практик. Одни факультеты запрещают нейросети, другие активно их используют, а единой линии нет. Такая фрагментация подрывает целостность образования.

Генеративный ИИ не только меняет инструменты, он подрывает старую учебную логику. Если ответ можно получить за пару секунд, традиционные задания теряют смысл. Возникает простой вопрос: зачем вообще учиться? Зачем писать, если можно сгенерировать? Зачем разбираться, если все уже готово? Остается только то, что машина не умеет: понимание, суждение, выбор, ответственность.

Большая часть системы пока не дает на это внятного ответа. Но отдельные попытки все же появляются. Главное, в них уже просматривается поворот: не отгораживаться от технологии, а переосмыслить образование через нее. В некоторых вузах внедряют цифровых тьюторов, которые помогают студентам ориентироваться в учебной нагрузке. Другие пересматривают задания: вместо стандартных рефератов вводят проекты, требующие оригинального мышления. Третьи создают центры ИИ-компетенций, где преподаватели учатся работать с новыми инструментами.

Две трети всех публикаций университетов об ИИ остаются нейтральными. Открытое неприятие встречается крайне редко. Позитивные оценки ИИ, как правило, исходят от ведущих и селективных вузов, в то время как остальные придерживаются осторожной или выжидательной позиции.

Но все это слишком точечно и слишком медленно. Пока это не политика и даже не тренд. Это попытки на ощупь, на свой страх и риск, и именно поэтому они пока ничего не меняют в общей картине. Для некоторых вузов внедрение нейросетевого помощника для студентов стало прорывом, но на уровне всей системы такие инициативы остаются исключением, а не правилом.

Чтобы сохранить свою роль, университету все равно придется пересматривать и содержание программ, и принципы оценивания. Лучше делать это раньше, чем позже. Надо перевести акцент с контроля на мышление, поддержать преподавателей не только требованиями, но и временем, обучением, признанием их усилий. Встроить ИИ не как внешний модуль, а как часть новой педагогики — той, где ценность создается не исключением технологии, а осмысленным взаимодействием с ней.

Это сложный путь, но другого не будет. Генеративный ИИ не вписывается в старую учебную логику, он обнажает ее усталость. Не стоит заливать «вино новое в мехи старые»: система, выстроенная под другие цели, не выдерживает давления новой технологической реальности. Образование больше не может притворяться, что ничего не изменилось. Университет, который не готов пересобрать себя заново, рискует не просто отстать в гонке инноваций — он рискует потерять собственную миссию в мире, где знания стали доступны по первому запросу.

Интересное:

Новости отрасли:

Все новости:

ГлавноеЭкспертыДобавить
новость
КейсыМероприятия