Как оптимизировать и управлять облачными финансами с ИИ: часть 2
Продолжаем исследовать роли ИИ в оптимизации затрат и управлении облачными финансамиОтвечает за применение современных облачных технологий в собственных продуктах линейки «Инферит Клаудмастер», анализирует тенденции на рынке «облаков» и систем виртуализации IT инфраструктуры.
Первая часть статьи — по ссылке.
Модели искусственного интеллекта могут анализировать в режиме реального времени данные об использовании облачных ресурсов. Это позволяет оперативно выявлять случаи перерасхода, а также давать конкретные рекомендации специалистам по оптимизации облачной инфраструктуры и снижению затрат без потери производительности и безопасности.
ИИ способен предложить оптимальные настройки и режимы эксплуатации для различных сервисов, варианты распределения нагрузки в мультиоблачной среде, а также подобрать лучшие тарифные планы на основе анализа текущих потребностей бизнеса. Решения FinOps могут автоматически применять такие рекомендации с учетом заданных ИТ-политик. Это повышает скорость и качество управления облачными расходами.
Крупнейшие международные технологические компании, такие как Google, Microsoft, Amazon активно инвестируют в разработку инструментов ИИ для FinOps на базе собственных облачных платформ. Производители специализированного ПО для FinOps за рубежом также активно внедряют ИИ для анализа данных, прогнозирования и поиска финансовых аномалий. Благодаря моделям ИИ организациям уже сейчас удается оптимизировать конфигурацию облачной инфраструктуры и предотвращать перерасход средств на обслуживание облачной ИТ-инфраструктуры.
Человек и ИИ — партнеры в новой парадигме FinOps
Несмотря на огромные возможности искусственного интеллекта, в том числе для управления затратами на облачные ресурсы, роль человека в FinOps незаменима.
Экспертная оценка инсайтов, полученных с помощью ИИ, а также разработка и контроль реализации стратегии по управлению облачными расходами — важнейшие факторы успеха.
Специалистов с хорошим знанием особенностей облачной инфраструктуры, прикладным пониманием реальных возможностей и ограничений ИИ, и базовой финансовой грамотностью на рынке мало. Спрос на них будет расти.
Вызовы на пути применения ИИ в FinOps
Можно выделить три ключевых фактора, сдерживающих внедрение искусственного интеллекта в FinOps-инструменты:
Первый — проблема доверия бизнеса к рекомендациям «черного ящика в китайской комнате», которым является ИИ. Бизнес хочет четко понимать, как именно искусственный интеллект оптимизирует затраты, на основании чего делает те или иные выводы. Разработчики при этом не раскрывают подробностей используемых моделей и построенных на них систем: для них это «know-how», на котором строится технологическое лидерство и рыночное конкурентное преимущество.
Второй — риски кибербезопасности при предоставлении искусственному интеллекту доступа к большим объемам данных, включая конфиденциальную информацию, утечка и раскрытие которой может быть болезненной для компании.
Третий — угроза «ошибок алгоритма», когда на основе искаженных данных искусственный интеллект может принять ошибочные бизнес-решения, что приведет к значительным финансовым потерям. Требуется контроль со стороны экспертов. Кроме того, системы ИИ могут подвергаться целевым кибератакам, которые не всегда можно обнаружить. «Ошибка» может быть запущена командой-триггером через заданный период времени.
Поэтому перед тем, как внедрять любое ИИ-решение, которому будет предоставлен доступ к бизнес-системе, тем более финансовым потокам, да еще и наделять его возможностью автоматически принимать решения и вносить изменения в процессы, необходимо понимать, как именно обеспечена надежность и безопасность системы, какие барьеры и меры приняты для предотвращения возможных атак и мошеннических действий. И, конечно, нужно иметь план Б на случай, если все же «что-то пошло не плану».
Четвертый барьер — нехватка квалифицированных специалистов, разбирающихся как в ИТ, облачных технологиях и ИИ, так и в финансовом менеджменте. Без экспертов не обойтись. А где искать этих единорогов — большой вопрос.
Перспективы ИИ в FinOps
В ближайшие 2-3 года года компании будут активно экспериментировать и внедрять искусственный интеллект в свои FinOps-стратегии. Мы станем свидетелями не только грандиозных успехов, но и ряда громких провалов, связанных с атаками и утечками, на которых нам предстоит учиться.
В оптимистической перспективе через несколько лет ИИ-функциональность станет неотъемлемой частью FinOps-продуктов. ИИ-системы будут предлагать стратегии по оптимизации мультиоблачных сред и сценарии развития ИТ-инфраструктуры для бизнеса. Более отдаленное будущее — за полной ИИ-автоматизацией облачного управления.
Со своей стороны мы в «Инферит Клаудмастер» внимательно изучаем возможности применения ИИ в FinOps и ориентируемся на те бизнес-результаты, которых клиенты смогут достичь при наличии такой функциональности в нашем продукте.
Интересное:
Новости отрасли:
Все новости:
Публикация компании
Профиль